feATURES

- -3 dB Bandwidth: $320 \mathrm{MHz}, \mathrm{A}_{V}=1$
- Gain-Bandwidth Product: $180 \mathrm{MHz}, A_{V} \geq 10$
- Slew Rate: 350V/us
- Wide Supply Range: 2.5V to 12.6 V

■ Large Output Current: 85mA
■ Low Distortion, 5MHz: -90dBc

- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Input Offset Voltage, Rail-to-Rail: 2.5mV Max
- Common Mode Rejection: 89dB Typ
- Power Supply Rejection: 87dB Typ

■ Open-Loop Gain: 100V/mV Typ

- Shutdown Pin
- 8-Pin SO-8 Package
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Driving A/D Converters
- Low Voltage Signal Processing
- Video Line Driver

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1809$ is a low distortion rail-to-rail input and output op amp with a $350 \mathrm{~V} / \mu$ s slew rate. The amplifier has a -3 dB bandwidth of 320 MHz at unity-gain, a gain-bandwidth product of $180 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}} \geq 10\right)$ and an 85 mA output current to fit the needs of low voltage, high performance signal conditioning systems.
The LT1809 has an input range that includes both supply rails and an output that swings within 20 mV of either supply rail to maximize the signal dynamic range in low supply applications.
The LT1809 has very low distortion (-90 dBc) up to 5 MHz that allows it to be used in high performance data acquisition systems.

The LT1809 maintains its performance for supplies from 2.5 V to 12.6 V and is specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.

The LT1809 is available in the 8 -pin S0 package with the standard op amp pinout. This device can be used as a plugin replacement for many op amps to improve input/output range and performance.

TYPICAL APPLICATION

Single 3V Supply, 4MHz, 4th Order Butterworth Filter

Filter Frequency Response

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-}) 12.6V
Input Voltage (Note 2) ... $\pm \mathrm{V}_{\mathrm{S}}$
Input Current (Note 2) $\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration (Note 3) Indefinite
Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature \qquad $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\overline{S H O N}}=$ open; $\mathrm{V}_{C M}=\mathrm{V}_{O U T}=$ half supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		0.3	1.75	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	-27.5	$\begin{gathered} \hline 1.8 \\ -13 \end{gathered}$	8	$\mu \mathrm{A}$
Δl_{B}	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		11.8	35.5	$\mu \mathrm{A}$
$\mathrm{l}_{0 S}$	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 1.2 \\ 4 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{L}_{0 \mathrm{~S}}$	Input Offset Current Shift	$V_{C M}=V^{-}$to V^{+}		0.25	5.2	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$f=10 \mathrm{kHz}$		5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \\ & V_{S}=5 \mathrm{~V}, V_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, R_{L}=100 \Omega \\ & V_{S}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & 35 \\ & 4.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 90 \\ & 10 \\ & 42 \end{aligned}$		V / mV V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & \hline 69 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & 78 \end{aligned}$		dB dB
	Input Common Mode Range		V ${ }^{-}$		V+	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	73	87		dB
	Minimum Supply Voltage (Note 6)			2.3	2.5	V

eLECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\text {SHDN }}=$ open; $\mathrm{V}_{C M}=\mathrm{V}_{\text {OUT }}=$ half supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=25 \mathrm{~mA}$		$\begin{gathered} 6 \\ 40 \\ 150 \end{gathered}$	$\begin{gathered} 20 \\ 80 \\ 300 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=25 \mathrm{~mA}$		$\begin{gathered} \hline 17 \\ 80 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 40 \\ 160 \\ 500 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	± 50 ± 40	$\begin{aligned} & \pm 85 \\ & \pm 70 \end{aligned}$		mA mA
IS	Supply Current			12.5	17	mA
	Disable Supply Current	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{\overline{S H D N}}=0 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{\overline{S H D N}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.55 \\ & 0.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$		160		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}_{P-P}$		300		V/ $/ \mathrm{s}$
THD	Total Harmonic Distortion	$V_{S}=5 \mathrm{~V}, A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 V_{P-P}, f_{C}=5 \mathrm{MHz}$		-86		dB
ts	Settling Time	$0.01 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{L}=1 \mathrm{k}$		40		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150 \Omega$		0.015		\%
$\Delta \theta$	Differential Phase (NTSC)			0.05		\%

The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{S}=3 \mathrm{~V}$, 0 V ; $\mathrm{V}_{\text {SHDN }}=0$ pen;
$V_{C M}=V_{\text {OUT }}=$ half supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{0 S}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		0.5	2	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet	-30	$\begin{gathered} 2 \\ -14 \end{gathered}$	10	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		12	40	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.05 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		0.45	6	$\mu \mathrm{A}$
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 25 \\ & 3.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 80 \\ & 8.5 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet	$\begin{aligned} & 67.5 \\ & 63.5 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	V^{-}		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$V_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	71	83		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
V_{OL}	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=25 \mathrm{~mA}$	\bullet		$\begin{gathered} \hline 8 \\ 40 \\ 160 \end{gathered}$	$\begin{gathered} \hline 25 \\ 80 \\ 320 \\ \hline \end{gathered}$	$m V$ $m V$ $m V$

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\overline{\text { SHDN }}}=0$ pen; $V_{C M}=V_{\text {OUT }}=$ half supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{array}{\|l} \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=25 \mathrm{~mA} \\ \hline \end{array}$	\bullet		$\begin{gathered} \hline 50 \\ 110 \\ 340 \end{gathered}$	$\begin{aligned} & \hline 100 \\ & 220 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
$I_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 45 \\ & +35 \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 65 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{5}	Supply Current		\bullet		15	20	mA
	Disable Supply Current	$\begin{aligned} & V_{S}=5 V, V \overline{S H D N}=0 V \\ & V_{S}=3 V, V \overline{S H D N}=0 V \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.58 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
GBW	Gain-Bandwidth Product		\bullet		145		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 V_{P-P}$	\bullet		250		V/ $\mathrm{\mu}$ S

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{SHDN}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \\ \hline \end{array}$		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	mV mV
Vos TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\mathrm{C}} \end{aligned}$
$\Delta \mathrm{Vos}$	Input Offset Voltage Shift	$V_{C M}=\mathrm{V}^{-}$	\bullet		0.5	2.25	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet	-35	$\begin{gathered} \hline 2 \\ -17 \\ \hline \end{gathered}$	12	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		14	47	$\mu \mathrm{A}$
$\mathrm{l}_{0 S}$	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 0.08 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		0.58	7.5	$\mu \mathrm{A}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, R_{L}=100 \Omega \\ & V_{S}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 20 \\ & 2.5 \\ & 12 \end{aligned}$	$\begin{gathered} 60 \\ 7 \\ 35 \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{array}{\|l\|l} \hline \bullet \\ \bullet \end{array}$	$\begin{aligned} & 66 . \\ & 62 . \end{aligned}$	$\begin{gathered} 80 \\ 75.5 \\ \hline \end{gathered}$		dB dB
	Input Common Mode Range		\bullet	V-		V+	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	71	83.5		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=25 \mathrm{~mA}$	\bullet		$\begin{gathered} 8 \\ 45 \\ 170 \end{gathered}$	$\begin{gathered} \hline 30 \\ 90 \\ 340 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=25 \mathrm{~mA}$	\bullet		$\begin{gathered} \hline 55 \\ 110 \\ 350 \end{gathered}$	$\begin{aligned} & \hline 120 \\ & 230 \\ & 620 \\ & \hline \end{aligned}$	mV mV mV
$I_{S C}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 3 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 70 \\ & \pm 60 \end{aligned}$		mA mA
IS	Supply Current		\bullet		15	21	mA
	Disable Supply Current	$\begin{aligned} & V_{S}=5 V, V_{\overline{S H D N}}=0 V \\ & V_{S}=3 V, V \overline{S H D N}=0 V \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.58 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.1 \\ 0.85 \\ \hline \end{gathered}$	mA mA

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, OV ; $\mathrm{V}_{\overline{S H D N}}=0$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS					
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	140	MHz
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}_{\text {P-P }}$	\bullet	180	$\mathrm{~V} / \mu \mathrm{S}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=$ open, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	mV mV
$\Delta \mathrm{Vos}$	Input Offset Voltage Shift	$V_{C M}=\mathrm{V}^{-}$to V^{+}		0.35	2	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	-30	$\begin{gathered} \hline 2 \\ -12.5 \end{gathered}$	10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		13.5	42.5	$\mu \mathrm{A}$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{gathered} 0.05 \\ 0.4 \end{gathered}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta l_{0 S}$	Input Offset Current Shift	$V_{C M}=\mathrm{V}^{-}$to V^{+}		0.45	7	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current Density	$f=10 \mathrm{kHz}$		5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{Cin}_{\text {in }}$	Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$		2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{gathered} 45 \\ 5 \end{gathered}$	$\begin{gathered} 100 \\ 12 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	73	89		dB
	Input Common Mode Range		V-		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	73	87		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=25 \mathrm{~mA}$		$\begin{gathered} \hline 8 \\ 46 \\ 170 \end{gathered}$	$\begin{gathered} 30 \\ 100 \\ 350 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & \text { I }_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=25 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 30 \\ 90 \\ 310 \end{gathered}$	$\begin{gathered} \hline 60 \\ 200 \\ 600 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		± 60	± 85		mA
Is	Supply Current			15	20	mA
	Disable Supply Current	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$		0.6	0.9	mA
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	120	180		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measure at } \mathrm{V}_{0}= \pm 3 \mathrm{~V} \end{aligned}$	175	350		V/us
HD	Total Harmonic Distortion	$A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 V_{P-P}, f_{C}=5 \mathrm{MHz}$		-90		dB
$t_{\text {s }}$	Settling Time	$0.01 \%, \mathrm{~V}_{\text {STEP }}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{L}=1 \mathrm{k}$		60		nS
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$A_{V}=2, R_{L}=150$		0.01		\%
$\Delta \theta$	Differential Phase (NTSC)			0.01		\%

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=0$ enen, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.25 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$V_{C M}=\mathrm{V}^{-}$to V^{+}	\bullet		0.5	2.15	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet	-37.5	$\begin{gathered} 2.5 \\ -15 \end{gathered}$	12.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		14	50	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 0.06 \\ 0.5 \end{gathered}$	$\begin{gathered} 2.25 \\ 6 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		0.56	8.25	$\mu \mathrm{A}$
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{RL}=100 \Omega \end{aligned}$	\bullet	$\begin{gathered} 35 \\ 4 \end{gathered}$	$\begin{aligned} & 90 \\ & 10 \end{aligned}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet	73.5	86		dB
	Input Common Mode Range		\bullet	V^{-}		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	\bullet	71	83		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=25 \mathrm{~mA}$	\bullet		$\begin{gathered} 10 \\ 45 \\ 185 \end{gathered}$	$\begin{gathered} 40 \\ 100 \\ 370 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=25 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 60 \\ 110 \\ 360 \end{gathered}$	$\begin{aligned} & 120 \\ & 220 \\ & 625 \\ & \hline \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	± 50	± 75		mA
IS	Supply Current		\bullet		17.5	25	mA
	Disable Supply Current	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	\bullet		0.6	1.1	mA
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	100	170		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V} \text {, } \\ & \text { Measure at } \mathrm{V}_{0}= \pm 3 \mathrm{~V} \end{aligned}$	\bullet	150	300		V/us

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=0$ pen, $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$, $\mathrm{V}_{\text {OUT }}=\mathrm{OV}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.75 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		0.5	2.5	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet	-45	$\begin{gathered} 2.8 \\ -17 \end{gathered}$	14	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Δl_{B}	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		19.8	59	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=0$ pen, $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$, $\mathrm{V}_{\text {OUT }}=\mathrm{OV}$ unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.1 \mathrm{~V} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 0.08 \\ 0.6 \end{gathered}$	$\begin{gathered} 2.5 \\ 8 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to $\mathrm{V}^{+}-0.1 \mathrm{~V}$	\bullet		0.68	10.5	$\mu \mathrm{A}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	\bullet	$\begin{gathered} 25 \\ 3 \end{gathered}$	$\begin{aligned} & 80 \\ & 10 \end{aligned}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	72	86		dB
	Input Common Mode Range		\bullet	V-		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	\bullet	71	83.5		dB
V_{OL}	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 10 \\ 50 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45 \\ 100 \\ 400 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=25 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 70 \\ 115 \\ 360 \\ \hline \end{gathered}$	$\begin{aligned} & 140 \\ & 240 \\ & 650 \end{aligned}$	mV mV mV
$\mathrm{ISC}_{\text {S }}$	Short-Circuit Current		\bullet	± 40	± 75		mA
I_{S}	Supply Current		\bullet		19	25	mA
	Disable Supply Current	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	\bullet		0.65	1.15	mA
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	90	160		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measure at } \mathrm{V}_{0}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet	110	220		V/ $/ \mathrm{s}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 1.4 V , the input current should be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT1809C/LT1809I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.

Note 5: The LT1809C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1809C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT1809I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
(LTC DWG \# 05-08-1610)

TYPICAL APPLICATION

Single Supply Video Line Driver

The LT1809 is a wideband rail-to-rail op amp with high output current that allows it to drive video signals in low supply applications. Figure 1 depicts a single supply video line driver with AC coupling to minimize the quiescent power dissipation. Resistors R1 and R2 are used to levelshift the input and output to provide the largest signal swing. The gain of two is set up with R3 and R4 to restore the signal at $V_{\text {OUT }}$ which is attenuated by 6 dB due to the
matching of the 75Ω line with the back-terminated resistor, R5. The back termination will eliminate any reflection of the signal that comes from the load. The input termination resistor, R_{T}, is optional-it is used only if matching of the incoming line is necessary. The values of C1, C2 and C3 are selected to minimize the droop of the luminance signal. In some less stringent requirements, the value of capacitors could be reduced.

Figure 1. Single Supply Video Line Driver

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1632/LT1633	Dual/Quad 45MHz, 45V/us Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $1.35 \mathrm{mV} \mathrm{V}_{\mathrm{OS}(\mathrm{MAX})}, 70 \mathrm{~mA}$ Output Current, Max Supply Current 5.2 mA per Amplifier
LT1630/LT1631	Dual/Quad 30MHz, 10V/رs Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $525 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, 70 mA Output Current, Max Supply Current 4.4 mA per Amplifier
LT1215/LT1216	Dual/Quad 23MHz, 50V/us Single Supply Precision Op Amps	Input Common Mode Includes Ground, $450 \mu \mathrm{~V} \mathrm{~V}_{0 S(\text { max })}$, $6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Drift, Max Supply Current 6.6 mA per Amplifier

